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Effect of an electric field on the stability of
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The stability of a liquid film flowing down an inclined plane is considered when
the film is contaminated by an insoluble surfactant and subjected to a uniform
normal electric field. The liquid is treated as a perfect conductor and the air above
the film is treated as a perfect dielectric. Previous studies have shown that, when
acting in isolation, surfactant has a stabilizing influence on the flow while an electric
field has a destabilizing influence. The competition between these two effects is the
focus of the present study. The linear stability problem is formulated and solved at
arbitrary parameter values. An extended form of Squire’s theorem is presented to
argue that attention may be confined to two-dimensional disturbances. The stability
characteristics for Stokes flow are described exactly; the growth rates of the normal
modes at finite Reynolds number are computed numerically. We plot the neutral
curves dividing regions of stability and instability, and trace how the topology of the
curves changes as the intensity of the electric field varies both for a clean and for
a contaminated film. With a sufficiently strong electric field, the neutral curve for a
clean film consists of a lower branch trapping an area of stable modes around the
origin, and an upper branch above which the flow is stable. With surfactant present, a
similar situation obtains, but with an additional island of stable modes disjoint from
the upper and lower branches.

1. Introduction
A voluminous literature has accumulated over the years addressing the flow of single

or multi-layered liquid films down an inclined plane (for a review, see Pozrikidis
2004). Much of the interest stems from the many industrial applications of these
types of flow. A thorough theoretical understanding of film flow behaviour is crucial
in aiding the design or improvement of technologies such as the manufacture of
photographic plates (e.g. Kistler & Schweizer 1997), and the development of lab-
on-a-chip microdevices (e.g. Karniadakis, Beskok & Aluru 2005) and spinning-disk
reactors (e.g. Matar & Lawrence 2006). In applications, the occurrence of waves on
the surface of the film may be a desirable feature, as in the case of a cooling film
where surface waves enhance heat transport (e.g. Dukler 1976; Yoshimura, Nosoko &
Nagata 1996). Conversely, surface waves may be an undesirable feature, as in the case
of coating flows where a smooth surface is usually required for the finished product
(e.g. Weinstein & Ruschak 2004).

One way to control surface waves on a liquid film is to use surface active agents,
or surfactants, which influence the dynamics by lowering the local surface tension.
The stability properties of a clean film with no surfactant present were first described
by Benjamin (1957) and Yih (1963). At zero Reynolds number, a clean film is stable
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to all linear perturbations. However, the flow becomes unstable when the Reynolds
number is raised above a critical value. The sufactant contributes an additional
term to the tangential stress balance at the film surface and establishes local surface
tension gradients and Marangoni tractions. Theoretical work by Benjamin (1964)
and Whitaker (1964) showed that surfactant raises the critical Reynolds number for
instability and hence tends to stabilize the film. Whitaker & Jones (1966) and Lin
(1970) obtained an asymptotic estimate for the critical Reynolds number valid in the
limit of long waves. Their result was confirmed by Anshus & Acrivos (1967) for the
case of a liquid film flowing down a vertical wall. Ji & Setterwall (1994) identified
an unstable Marangoni mode associated with the presence of a soluble surfactant
in a vertically falling film. Blyth & Pozrikidis (2004b) studied inclined film flow in
the presence of an insoluble surfactant and calculated the neutral curve dividing
stable and unstable regions for arbitrary Reynolds number and wavenumber. The
overall effect of the surfactant is stabilizing; it raises the critical Reynolds number
for instability at any given wavenumber. In related work, Frenkel & Halpern (2002),
Halpern & Frenkel (2003) and Blyth & Pozrikidis (2004a) considered the stability of
two-layer flow in the presence of an insoluble surfactant. This work was extended to
include inertia by Blyth & Pozrikidis (2004c) and by Frenkel & Halpern (2005).

Another means of controlling the dynamics of a liquid film is through the appli-
cation of an electric field. In theoretical investigations, the film is often regarded as
a perfect conductor, wherein the electric field vanishes, and the air above the film
is regarded as a perfect dielectric supporting a potential difference between the film
surface and, for example, an electrode placed some distance from the wall. The
electric field influences the flow by contributing an additional Maxwell stress term to
the balance of normal stress at the film surface. Previous work has revealed that the
electric field has a generally destabilizing effect on the flow. Using a long-wave theory,
Gonzalez & Castellanos (1996) demonstrated that the critical Reynolds number is
lowered when the film is electrified. Their work was extended to large Reynolds
number by Mukhopadhyay & Dandapat (2005). Tseluiko & Papageorgiou (2006)
conducted a long-wave analysis of electrified film flow down an inclined plane and
developed an evolution equation to describe the weakly nonlinear dynamics. In an
appropriate set of limits, they showed that their equation reduces to the Kuramoto–
Sivashinsky equation and demonstrated the existence of periodic travelling waves,
homoclinic bursts and chaotic oscillations. Kim, Bankoff & Miksis (1991) investigated
film flow down a plane wall when an electrode of finite length is placed at a fixed
distance from the wall. They performed linear stability calculations assuming an
infinite electrode, and used the lubrication approximation to derive a nonlinear
evolution equation for the film height for a finite electrode. Solutions of the film
height equation were compared with experimental observations by Griffing et al.
(2006). The effect of a magnetic field on inclined film flow has also been considered
(e.g. Shen, Sun & Meyer 1991).

In the present work, we consider film flow down an inclined plane and focus on
the competition between the stabilizing influence of an insoluble surfactant and the
destabilizing influence of an electric field. The combined effects of an electric field
and a surfactant have been studied in the context of the deformation of a viscous
drop (Ha & Yang 1995, 1998). In the current model, the liquid film is assumed to be
a perfect conductor, and the air above the film is assumed to be a perfect dielectric.
The surfactant is assumed to be insoluble and therefore unable to penetrate the bulk
of the fluid. Our aim is to determine the stability of the liquid film over a range of
parameter values. In particular, we compute neutral curves in wavenumber/Reynolds
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Figure 1. Illustration of gravity-driven film flow down an inclined plane wall. The film is
contaminated with an insoluble surfactant and an electric field acts normal to the wall at
infinity.

number space and demonstrate how their topology changes as the intensity of the
electric field or the prevailing level of surfactant is varied.

In § 2, we formulate the general problem of electrified film flow; in § 3, we prepare the
equations governing the stability of small perturbations; in § 4, we present solutions
to the linear stability problem; and finally, in § 5, we summarize our findings.

2. Problem formulation
We consider the stability of gravity-driven film flow down a plane wall in the

presence of an electric field when the film is contaminated with an insoluble surfactant
(figure 1). The liquid film is assumed to be a perfect conductor, and the air above
the film is assumed to be a perfect dielectric. The electric field at infinity acts in the
direction normal to the wall. The surfactant, which is present in the concentration
Γ (x, t), diffuses and is convected freely over the film surface, but is not able to
penetrate the bulk of the fluid. At each point on the surface, the local surface tension
γ (x, t) varies according to the local surfactant concentration.

The fluid motion in the film satisfies the Navier–Stokes equation and the
incompressibility condition,

∂u
∂t

+ u · ∇u = − 1

ρ
∇p +

µ

ρ
∇2u, ∇ · u = 0, (2.1)

where ρ and µ are, respectively, the density and viscosity of the liquid, p is the
pressure and u = (ux, uy) is the velocity. The boundary conditions at the wall are
those of no-slip and impermeability. The jump in the fluid stress at the free surface
is balanced by the capillary pressure, the Marangoni force due to surfactant-induced
variations in the surface tension, and the Maxwell force due to the electric field, so
that

σ · n = −(γ κ + pa) n − ∂γ

∂l
t + M · n, (2.2)

where l measures arclength along the free surface, pa is the atmospheric pressure, n
is the unit normal to the free surface pointing into the film, and σ is the Newtonian
stress tensor in the liquid. The curvature, κ , is taken to be positive when the surface
is downwards parabolic (figure 1). The Maxwell stress tensor, M, is defined by (e.g.
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Melcher & Taylor 1969)

M = ε
(
E E − 1

2
I |E|2

)
, (2.3)

where E is the electric field and ε is the permittivity of the air above the film. Since
the fluid is assumed to be a perfect conductor, the electric field at the fluid surface
acts only in the normal direction. From (2.2) and (2.3), it follows that the electric field
does not contribute to the tangential stress balance at the free surface, which includes
only the effect of the surfactant and is given by

t · σ · n = −∂γ

∂l
. (2.4)

However, it contributes a positive term to the right-hand side of the normal stress
balance at the free surface, which is expressed by

n · σ · n = −(γ κ + pa) + 1
2
ε|E|2. (2.5)

Finally, the kinematic condition at the free surface, located at y = f (x, t), requires
that D(y − f )/Dt = 0, where D/Dt is the material derivative.

Introducing a potential, φ(x, y, t), such that E = − ∇φ, the electric field is assumed
to satisfy the Laplace equation above the film,

∇2φ = 0. (2.6)

Since the liquid is a perfect conductor, the electric field at the film surface must
satisfy the condition E · t = 0, where t is the unit tangent pointing in the direction of
increasing arclength. Accordingly, we take φ = 0 on y = f (x, t). A long way from the
film, the electric field acts normal to the wall with strength E so that φ → −E y as
y → ∞.

The surfactant concentration, Γ , satisfies the surface convection–diffusion equation,

dΓ

dt
+

∂(ut Γ )

∂l
= −Γ κ un + Ds

∂2Γ

∂l2
, (2.7)

(e.g. Li & Pozrikidis 1997; Yon & Pozrikidis 1998), where ut = u · t and un = u · n
are the interfacial velocities in the directions of the tangential and normal vector,
respectively, and Ds is the surface surfactant diffusivity. In most practical applications,
the surfactant diffusivity is very small. The derivative d/dt on the left-hand side of
(2.7) denotes the rate of change following the motion of interfacial marker points
moving with the component of the fluid velocity normal to the interface (Li &
Pozrikidis 1997). Since the electric field acts only in the normal direction at the free
surface, there is no component of the electric force in the tangential direction and
(2.7) is expected to hold as a first approximation. Accordingly, the electric field is
assumed to have only a passive effect on the surfactant transport.

The surfactant is assumed to alter the local surface tension according to Gibbs’
linear equation of state, γc − γ =Γ RT , where R is the ideal gas constant, T is
the absolute temperature, and γc is the surface tension prevailing in the absence of
surfactant (see e.g. Adamson 1990). It is convenient to express this equation in the
equivalent form,

γ = γc

(
1 − β

Γ

Γ0

)
, (2.8)

where Γ0 is the reference level of the surfactant concentration in the unperturbed state
of a flat film with corresponding surface tension γ0 = γc(1 − β). The dimensionless
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parameter β = Γ0RT/γc is related to the so-called surface elasticity E = γcβ/Γ0. In
this paper, we will present results in terms of the dimensionless Marangoni number,
Ma, which is related to β through Ma = β/(1 − β). When Ma = 0, the surface tension
is constant and the Marangoni force vanishes.

An exact solution of the problem (2.1)–(2.8) valid for a flat film surface is given by
the well-known Nusselt profile in the liquid,

ux =
ρg sin θ

2µ
y(2h − y), uy = 0, p = pa + ρg(h − y) cos θ, (2.9)

where g is the acceleration due to gravity and h is the uniform height of the film, and
by

φ = −E y (2.10)

for the electric potential. In the next section, we shall examine the stability of the
basic solution (2.9) and (2.10) to a linear perturbation to the free surface. Our aim
is to classify the film stability according to the intensity of the imposed electric field
and the prevailing strength of the surfactant.

3. Linear stability
In this section, we perform a linearised analysis to determine the stability of the film

to small perturbations. First we nondimensionalise the flow variables using the Nusselt
surface speed, Us = (ρgh2 sin θ)/2µ, the undisturbed film height, h, the pressure scale
ρU 2

s , and the time scale h/Us . The electric potential is nondimensionalised using the
far-field reference value Eh and the surface tension and the surfactant concentration
using the reference values γ0 and Γ0. All variables presented henceforth have been
made dimensionless according to these scales.

In order to assess the stability of the film flow, we appeal to an extended form
of Squire’s transformation (see Appendix A) and confine our attention to two-
dimensional disturbances. Proceeding, we perturb the film height so that the free
surface is located at

y = 1 + δ A1 eik(x−ct), (3.1)

where δ is a small parameter. Introducing a stream function, ψ(x, y, t), defined so
that u = ∂ψ/∂y and v = − ∂ψ/∂x, the solution to the perturbed problem is found at
successive levels of approximation by expanding in powers of δ as follows,

ψ = y2
(
1 − 1

3
y
)

+ δ ψ1(y) eik(x−ct) + · · · , γ = 1 + δ γ1 eik(x−ct) + · · · ,

Γ = 1 + δ Γ1 eik(x−ct) + · · · , φ = −y + δ φ1(y) eik(x−ct) + · · · ,

}
(3.2)

with a similar expansion for the pressure. Substituting into the dimensionless form of
(2.1) and linearizing, we derive the Orr-Sommerfeld equation

ψ
(iv)
1 − 2k2ψ ′′

1 + k4ψ1 = ikRe [ (2y − y2 − c)(ψ ′′
1 − k2ψ1) + 2ψ1], (3.3)

where a prime denotes differentiation with respect to y. To satisfy the no-slip and
impermeability conditions, we require that ψ1 = ψ ′

1 = 0 at y =0. Linearising the
dimensionless form of (2.2) and using the linearised dimensionless forms of (2.7)
and (2.8), we obtain the condition for the jump in the tangential stress component at
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the free surface,

ψ ′′
1 + k2ψ1 − 2A1 =

ikMa

Ca ζ − ik/α
ψ ′

1, (3.4)

where ζ = 1 − c, and all of the terms are evaluated at y = 1. For the jump in the
normal stress component at the free surface, we obtain

−iψ ′′′
1 + k(3ik − Re ζ ) ψ ′

1 =

[
2k (cot θ − kWe) +

k3

Ca

]
A1, (3.5)

where all terms are evaluated at y = 1. It should be noted that in deriving (3.5) we
have made use of the x-component of the linearised momentum equation (2.1) to
eliminate the pressure term. The linearised kinematic equation yields

ψ1 = −ζA1. (3.6)

The dynamics are governed by the Marangoni number, Ma, and also by the Reynolds
number, Re, the capillary number, Ca, the Weber number, We, and the dimensionless
property group α, defined by

Re =
ρhUs

µ
, Ca =

µUs

γ0

, We =
εE2h

2µUs

, α =
γ0h

µDs

. (3.7)

To determine the stability of the film, we solve (3.3) subject to (3.4)–(3.6) and compute
the dimensionless growth rate of the linear perturbation, s = kcI , where cI denotes the
imaginary part of the complex wave speed. Then if s > 0 the flow is linearly unstable
and if s < 0 the flow is linearly stable.

4. Results
Blyth & Pozrikidis (2004b) used a Chebyshev-tau method to obtain numerical solu-

tions to the linear stability problem in the absence of an electric field, with We =0. They
found that the flow is stable provided that the Reynolds number lies below a critical
value. This critical Reynolds number decreases as the angle of inclination is increased.
Studying the right-hand side of the linearized normal stress balance (3.5) we see that,
for a fixed wavenumber, an electrified film at a non-zero Weber number is equivalent
to a non-electrified film flowing down a wall set at the larger angle of inclination
ϕ satisfying cotϕ = cot θ − kWe. In particular, if k > We−1 cot θ , the situation is the
same as for a non-electrified film inclined at an obtuse angle to the horizontal, and
physical intuition suggests that in this case, gravity is likely to have a destabilizing
effect on the film flow. Following this observation, we start by considering the effect of
increasing the inclination angle for a non-electrified film beyond the values discussed
by Blyth & Pozrikidis (2004b). In figure 2, we show two neutral curves computed
using the same numerical method as Blyth & Pozrikidis (2004b) for a contaminated
film with We = 0 and Ca = 2.0, Ma =1.0 and α = 10.0. Figure 2(a) displays the neutral
curve for a vertical film, with θ =0.5π, and figure 2(b) displays the neutral curve for
a film inclined beyond the vertical, with θ = cot−1(−0.5) ≈ 0.65π. The results are in
line with physical intuition which suggests that the film flow becomes less stable as
the inclination angle is increased beyond the vertical. Less intuitively obvious is the
presence of a hoop of stable modes penetrating the unstable region in figure 2(b),
and which may be attributed physically to the presence of the surfactant; when the
surfactant is removed, all of the modes within the hoop become unstable.
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Figure 2. Neutral curves for a non-electrified contaminated film with Ca = 2.0, Ma = 1.0,
α = 10.0, We = 0 and (a) θ = 0.5π, (b) θ = 0.6476π. The labels S and U denote the stable and
unstable regions, respectively.

Turning to an electrified film, solutions for Stokes flow may be obtained exactly
by working in a similar manner to that of Pozrikidis (2003) in the absence of an
electric field. The details of the calculation are provided in Appendix B. Pozrikidis
showed that at zero Reynolds number there are two normal modes, both of which
have a negative growth rate corresponding to a stable film. One of the modes, termed
the Yih mode, is associated with the interfacial deflection, and the other, termed the
Marangoni mode, is associated with the presence of the surfactant. With an electric
field, when k � 1, we find the asymptote for the Yih mode,

s1 ∼ − 1

2Ca
k + We − (cot θ)

1

k
+ · · · , (4.1)

and the asymptote for the Marangoni mode,

s2 ∼ − 1

αCa
k2 − Ma

2Ca
k + · · · , (4.2)

where the . . . represent exponentially small terms. This shows that both modes are
stable for sufficiently large wavenumber. For smaller wavenumbers, there may exist
a window of unstable modes if the Weber number exceeds a critical value. The
asymptotic approximations (4.1) and (4.2) agree with those of Pozrikidis (2003) when
the Weber number is zero.

In figure 3(a), we show the growth rates, s, corresponding to the two normal modes
for the case Re =0, Ca =2.0, We =1.5, and α = 10.0. The growth rates of the first two
normal modes are shown as thin lines for a clean interface, with Ma = 0, and as
thick lines for a contaminated interface, with Ma = 1.0. The asymptote (4.1) for the
dominant Yih mode, s1, is shown as a broken line in figure 3(a). For both small and
large wavenumbers, the surfactant has little effect on the dominant growth rate. For
the case with surfactant, Ma =1.0, the liquid film is unstable when 1.08 <k < 5.24 and
stable otherwise. The unstable range is slightly larger for a clean interface. Figure 3(b)
shows the effect of switching on the electric field when Ca = 2.0, Ma = 1.0, α = 10.0
for We = 1.5 and We = 0. The growth rates of the first two normal modes are shown as
thick lines for We = 1.5 and as thin lines for We = 0. When We = 0, the flow is stable.
As can be seen, the effect of the electric field is to raise the growth rate of the first
mode, provoking instability. It is noticeable that the growth rate of the second mode
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Figure 4. Variation of the critical Weber number, Wec , with (a) the Marangoni number when
Ca = 2.0 and (b) with the capillary number when Ma = 1.0 (solid line) and Ma = 0 (broken
line). In both (a) and (b) α = 10.0 and θ = π/4.

is only significantly affected over a certain range of wave-numbers. At both small and
large wavenumber, the growth rate of the second mode approaches its value for an
unelectrified film.

As the Weber number is reduced, the range of unstable wavenumbers contracts
and disappears at a critical value, Wec, below which the film flow is stable for all
wavenumbers. In figure 4, we show how this critical Weber number depends on
the Marangoni and capillary numbers. Increasing the surfactant level at the fixed
capillary number Ca = 2.0 raises the critical Weber number to a maximum value at
approximately Ma = 0.26 (figure 4a). Over the range of Marangoni numbers shown,
the critical wavenumber is found to vary between 2 and 2.14. Figure 4(b) shows the
dependence of Wec on the capillary number for a contaminated film with Ma = 1.0,
shown as a solid line, and for a clean film with Ma = 0, shown as a broken line.
Evidently, lowering the capillary number causes Wec to increase sharply and thus
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tends to stabilize the film. It is also noticeable that the presence of the surfactant has
little effect on the critical Weber number.

In the absence of an electric field, the long-wave limit was studied by Benjamin
(1957) and Yih (1963) for a clean free surface, and by Whitaker & Jones (1966)
and Lin (1970) in the presence of surfactant. Gonzalez & Castellanos (1996) derived
an expression for the growth rate of long linear waves in an electric field. With
both an applied electric field and surfactant present, we expand the perturbation
streamfunction ψ1 and complex wave speed c as a series in powers of k, substitute
into (3.3) and (3.4)–(3.6), and thereby derive the growth rate for long waves,

s = kcI =

(
8
15

Re − 2
3
cot θ − Ma

Ca

)
k2 + 2

3
We k3 + · · · , (4.3)

valid as k → 0. This reduces to the result of Gonzalez & Castellanos (1996) when
Ma = 0. The electric field only affects the growth rate of long-wave disturbances at
second order. It introduces a first-order correction to the critical Reynolds number
reported by Blyth & Pozrikidis (2004b) for instability,

Rec = 5
4
cot θ +

15Ma

8 Ca
− 5

4
We k. (4.4)

In line with the observations of Gonzalez & Castellanos (1996), the electric field
correction reduces the critical Reynolds number, introducing a band of unstable
modes for Re >Rec. This highlights the destabilizing effect of the electric field. It
should be noted, however, that (4.4) only represents the critical Reynolds number
when the Weber number is below a threshold value. As we shall see below, the
neutral curve may turn back on itself further up in wavenumber space and so produce
instability at a lower Reynolds number. This is in accord with the above comments
regarding Stokes flow, where for sufficiently large Weber number, instability occurs
at zero Reynolds number.

For general parameter values, the problem (3.3)–(3.6) must be solved numerically.
Kim et al. (1991) presented some results for an infinite electrode placed at a large,
but finite distance from a clean film. They used a shooting method to compute results
for quite small wavenumbers and Reynolds numbers up to 20. We have computed
results using the Chebyshev-tau method of Blyth & Pozrikidis (2004b) modified to
include the effect of the electric field in the normal stress condition. The method is
capable of producing highly accurate solutions for a wide range of Reynolds numbers
up to very large values. By way of a check on the results, in figure 3(b) we show the
computed growth rate of the dominant normal mode for the case Ca = 2.0, Ma =1.0,
α = 10.0, and We = 1.5. The results computed using the Chebyshev-tau method are
shown as circles. The predictions of the Stokes analysis are shown as a solid line. The
agreement between the two sets of results is excellent. Here and in the remainder of
the paper, results were computed using 25 Chebyshev modes, which are sufficient to
produce an accurate solution.

We begin by considering the effect of an electric field on a clean film. In figure 5
(a − d), we show the neutral curves separating stable and unstable modes in the
(Re, k)-plane for a clean film with Ma = 0 when Ca = 2.0. The neutral curve when
there is no electric field, We =0 shown in figure 5(a) is identical to that found by
Blyth & Pozrikidis (2004b) in their figure 5(a). The portions of the curves below
about k = 0.8 agree qualitatively in shape with those presented by Kim et al. (1991) in
their figure 2 for different parameter values. The results of Blyth & Pozrikidis (2004b)
show that the Marangoni mode dominates in the stable region, and the Yih mode
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Figure 5. Neutral curves for a clean film with Ma = 0, Ca = 2 and θ = π/4 for (a) We = 0,
(b) We = 1.0, (c) We = 1.0052, (d) We =1.03. The labels S and U denote the stable and unstable
regions, respectively.

dominates in the unstable region; see in particular their figure 4(a). The same applies
in the presence of an electric field. A numerical check on the size of the individual
terms in the normal and tangential stress balances, (3.4) and (3.5), confirms that, for
a fixed wavenumber in figure 5(b), where We =1.0, the surfactant plays a dominant
role in the stable region, but takes a back-seat role in the unstable region.

As the Weber number is increased, the small wavenumber portion of the neutral
curves in figure 5 is tugged towards the k-axis while the critical Reynolds number, Rec,
for instability decreases in accordance with (4.4). The analysis for Stokes flow shows
that when Ca = 2, the critical Weber number for instability at zero Reynolds number
is given by Wec = 1 (see figure 4b) with corresponding critical wavenumber kc = 2. For
We > 1, the neutral curves cut the k-axis subtending a window of unstable modes at
Re = 0 around k = kc. The result for We = 1.0052 (figure 5c) indicates how the topology
of the curves changes as the Weber number is increased beyond the critical unit value.
As We increases above 1.0052, the two curves in figure 5(c) merge and then split apart
to form an upper and a lower branch. These branches are illustrated for the sample
case We = 1.03 in figure 5(d). The lower and upper branches cut the vertical axis at
k = 1.57 and k = 2.55, respectively, in agreement with exact calculations for Stokes
flow following the description in Appendix B. The lower branches of the neutral
curves for larger Weber number are shown in figure 6. The upper branches, which are
not shown, are shifted upwards to larger and larger wavenumbers as We increases.
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Figure 6. The lower branches of the neutral curves for a clean film with Ma = 0 and Ca = 2
for We = 1.03, 1.25, 1.5, 2.0, 4.0 as shown. The broken line indicates the predicted critical
Reynolds number (4.4) when We = 2.0.

For a fixed Weber number and a sufficiently large wavenumber perturbation, the film
is stable. As in figure 5(d), each lower branch curve encloses a region of stable modes
including the origin. Points outside of this region (but beneath the unseen upper
branch) correspond to unstable modes. As We increases, the cut-off wavenumber at
Re =0 decreases and the region of stable modes shrinks progressively. The broken
line indicates the long-wave prediction (4.4) when We = 2.0.

The behaviour of the neutral curves as the Weber number varies is markedly dif-
ferent when surfactant is present. Blyth & Pozrikidis (2004b) found that for a
contaminated film with no electric field, the critical Reynolds number increases
monotonically with the wavenumber for acute inclination angles. As discussed above,
imposing an electric field for a fixed wavenumber perturbation may alternatively
be viewed as increasing the angle of inclination, θ , for a non-electrified film. We
saw in figure 2(b) how increasing the angle of inclination leads the neutral curve to
follow a more complicated path. Consequently, we should expect the electric field
to have a significant effect on the shape of the neutral curves. Neutral curves for a
contaminated film subjected to an electric field are shown in figure 7 for Ca =2.0,
Ma = 1.0, α = 10.0, θ = π/4 and a sequence of values of We. The Stokes flow analysis
yields the critical Weber number Wec = 1.006 when Ma =1.0 and Ca = 2.0. The neutral
curve corresponding to this critical value is shown in figure 7(a). When We < Wec, the
critical Reynolds number is computed to be Rec ≈ 2.2 in agreement with the predicted
value Rec = 2.1875 from (4.4). When We > Wec, there appears a small neutral hoop
subtending a window of unstable modes at zero Reynolds number (figure 7b). As
We increases, the gap between the hoop and the original branch closes and the two
pinch together and then separate to form distinct upper and lower neutral branches
(figure 7c). A long finger of stable modes on the lower branch protrudes up to about
Re =218 at the tip when We =1.1. As the Weber number is further increased, the
upper branch moves upwards, widening the band of unstable modes at Re = 0. The
length of the lower neutral ‘finger’ shortens with increasing Weber number. Figure 8
shows that when We ≈ 1.85, the lower branch finger pinches together to leave an
isolated loop of stable modes displayed in figure 9(a). The upper branches in figures
8 and 9(a) emanate from k =6.81 and k =7.46 at Re =0, respectively, but are not



232 M. G. Blyth

0 100 200

1

2

3

(a) (b)

(c) (d)

k

S

U

S

U

S

S

U

Re Re

S

S

U

U

0 100 200

1

2

3

0 100 200

1

2

3

k

0 100 200

1

2

3

Figure 7. Neutral curves for the case Ca = 2.0, Ma = 1.0, α = 10.0, θ = π/4 and (a) We =1.006,
(b) We =1.03, (c) We =1.04, (d) We = 1.1. The labels S and U denote the stable and unstable
regions, respectively.
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Figure 8. The pinching of the lower branch of the neutral curve for Ca = 2.0, Ma = 1.0, α =
10.0 and We = 1.85. The labels S and U denote the stable and unstable regions, respectively.

shown. As the Weber number increases, the upper branches move upwards to larger
and larger wavenumbers; for sufficiently large wavenumber, the flow is stable. The
appearance of the stable loop is anticipated by the results shown in figure 2(b) where
the appearance of a loop of stable modes was demonstrated for a non-electrified
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Figure 9. The case Ca =2.0, Ma = 1.0, α = 10.0, θ = π/4 and We = 2.0: (a) the lower branches
of the neutral curve, and (b) the variation of the growth rates of the Yih mode, shown as a
broken line, and the Marangoni mode, shown as a solid line, with Reynolds number when
k =0.75.

film on a wall inclined beyond the vertical. Figure 9(b) shows the effect of inertia on
the growth rates of the Yih and Marangoni modes, which in this case correspond
to the two most dangerous modes, at the fixed wavenumber k = 0.75. The Yih mode
dominates at very small Reynolds number, but is rapidly overtaken by the Marangoni
mode, which governs the stability at higher Reynolds number and through the stable
loop seen in the neutral curve of figure 9(a). Checking the numerical size of the
individual terms in the normal and tangential stress balances (3.4) and (3.5) confirms
that the surfactant has little effect at small Reynolds number, but plays a dominant
role at moderate to large Reynolds number.

To provide a guideline calculation for the stability of a liquid film under laboratory
conditions, we select the physical parameter values used by Wierschem, Scholle &
Aksel (2003) in their experiments on film flow down a corrugated wall. They
took h = 0.5 cm, γ = 21.4 g cm−2, ρ = 0.972 g cm−3 and µ =56.2 g cm−1s−1, which yield
equivalent values of the Reynolds number and capillary number for a flat wall inclined
at an angle θ = π/4 to the horizontal of Re = 0.013 and Ca = 4.0. Typical values for
the Marangoni number and surfactant diffusivity at an air–water interface are given
by Ma =0.02 and Ds =10−6 cm2 s−1 (Eggleton, Pawar & Stebe 1999, p. 87). With
this value for the surfactant diffusivity we find α = 2 × 105. Under these conditions,
when there is no electric field, We = 0, the film is stable. The critical Weber number
for instability is Wec ≈ 0.71, corresponding to a critical electric field strength of
E0 = 1.64 × 104 V cm−1. For Weber numbers beyond this value the film is unstable.

5. Discussion
We have studied the linear stability of a liquid film flowing down an inclined plane

when the film surface is contaminated with an insoluble surfactant and the film is
subjected to an electric field. The problem was formulated for arbitrary parameter
values. Exact solutions to the linear stability problem were presented at zero Reynolds
number, and a Chebyshev-tau numerical method was used to compute results at finite
Reynolds number.

At zero Reynolds number, there exists a critical Weber number above which the
film becomes unstable. Increasing the Weber number through and beyond this critical
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value opens up a window of unstable modes subtended about a critical wavenumber.
Below the critical Weber number, the flow is stable. For large wavenumber, regardless
of the size of the Weber number, the flow is stable and to leading order, the first two
normal modes behave as they would with no applied electric field. The critical Weber
number has only a mild dependence on the Marangoni number, varying typically
by only about 1% as the Marangoni number is increased from zero. However, the
critical Weber number shows a much stronger dependence on the capillary number.
In particular, the critical Weber number increases without bound as the capillary
number is lowered.

When the Reynolds number exceeds a threshold value, the film is always unstable
for sufficiently small wavenumber. The stability characteristics for larger wavenumber
depend crucially on the size of the Weber number. In addition, the stability
characteristics are significantly different for a clean and a contaminated film subjected
to an electric field. With no surfactant present, the neutral curve consists of a single
branch extending like a parabola from a finite critical Reynolds number at k = 0. The
critical Reynolds number gradually decreases as the Weber number is increased. It
jumps to zero at a particular value of the Weber number when a hoop of unstable
modes centred around a critical wavenumber emerges from Re =0. The hoop makes
contact with the original branch and the two then separate to form two disjoint
branches, an upper and a lower, sandwiching unstable modes in between. With
surfactant present, the neutral curve at zero Weber number is similar to that found
for a clean film, but deformed to include a long finger of stable modes penetrating
to a large Reynolds number. As the Weber number is raised, a hoop of unstable
modes again emerges from Re = 0 and connects with the main curve to form an
upper branch and a lower branch. Ultimately, the long finger which now forms the
main part of the lower branch pinches off to leave a disjoint island of stable modes
isolated in parameter space.

In conclusion, we affirm the results of previous studies that the electric field has
a destabilizing influence on the film dynamics. In particular, it tends to lower the
critical Reynolds number for instability at a given wavenumber. The introduction of
surfactant onto the electrified film has important implications for the topology of the
neutral curves in wavenumber/Reynolds number space. In particular, the surfactant
is able to stabilize the flow for a set of modes which would otherwise be unstable for
a clean electrified film.

This research was supported by the EPSRC under grant EP/D052289/1.

Appendix A. Squire’s transformation for film flow
Yih (1955) discussed the extension of Squire’s theorem to free-surface flows, but

did not present explicit details. Hesla, Pranckh & Preziosi (1986) considered the case
of two superposed clean fluid layers of different viscosity and density in a channel.
Here we demonstrate that it is possible to extend Squire’s transformation to the
currently considered problem of film flow down an inclined plane in the presence of
an insoluble surfactant and a normal electric field.

The problem is to solve the linearized form of (2.1) valid for a small three-
dimensional disturbance to the basic flow. The boundary conditions include the no-
slip and impermeability conditions at the wall, and at the free surface the kinematic
condition and the dynamic stress condition,

σ · n = −(2γ κm + pa) n − ∇sγ − M · n, (A 1)
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where ∇s =(I − nn) · ∇ is the surface gradient operator acting in a plane tangential to
the free surface, and κm ≡ (1/2)∇ · n is the mean curvature. The surfactant transport
equation is (e.g. Li & Pozrikidis 1997; Yon & Pozrikidis 1998)

dΓ

dt
+ ∇s · (Γ us) = −2Γ κmu · n + Ds∇2

sΓ, (A 2)

where us = (I − nn) · u is the surface velocity. The derivative d/dt is defined in § 2. The
Gibbs’ linear law relating the surface tension to the local surfactant concentration
is given by (2.8). The electric field problem is given by (2.6) with φ = 0 on the free
surface and with φ → −Ey as y → ∞.

We non-dimensionalize as described in § 3 and assume that the film is perturbed so
that the free surface is located at

y = 1 + δ A1 ei(kx+mz−kct), (A 3)

where m is the transverse wavenumber and the z-axis points out of the paper in
figure 1. The velocity field, pressure, surface tension and surfactant concentration are
expanded as

(u, v, w) = (2y − y2, 0, 0) + δ (u1(y), v1(y), w1(y)) ei(kx+mz−kct) + · · · ,
p = pa/

(
ρU 2

s

)
+ 2Re−1(1 − y) cot θ + δ p1(y) ei(kx+mz−kct) + · · · , (A 4)

(γ, Γ, φ) = (1, 1, −y) + δ (γ1, Γ1, φ1) ei(kx+mz−kct) + · · · ,
where w is the velocity component in the z-direction. Substituting the expansions for
the velocity field and pressure into the dimensionless form of (2.1) and linearizing, we
derive a standard set of perturbation momentum equations, with body force terms
due to gravity, governing three-dimensional disturbances (e.g. Drazin & Reid, p. 155).

The no-slip and impermeability conditions at the wall require u1 = v1 = w1 = 0. At
the free surface, we define tx to be the unit vector tangent to the surface pointing in
the x-direction, and tz to be the binormal unit vector satisfying tz = tx × n. Next, we
substitute (A 4) into the dimensionless form of (A 1), linearize, and take the normal
component to obtain

A1

(
2 cotθ +

k2 + m2

Ca

)
− Re p1 + 2v′

1 + 2We φ′
1 = 0, (A 5)

and the tx component to obtain

2A1 − u′
1 − ik v1 = 2 ikWe (A1 + φ1) − αk (ku1 + mw1) Ma

iαCa k(c − 1) − (k2 + m2)
, (A 6)

and the tz component to obtain

−imv1 − w′
1 = 2 imWe (A1 + φ1) − αm (ku1 + mw1) Ma

iαCa k(c − 1) − (k2 + m2)
. (A 7)

The kinematic condition becomes

v1 + ikA1 (c − 1) = 0. (A 8)

All terms in (A 5)–(A 8) are evaluated at y = 1. Defining an extended form of Squire’s
transformation (e.g. Drazin & Reid, p. 129, 155), we write k̃2 = k2 + m2, c̃ = c, and
k̃R̃e = kRe, k̃C̃a = kCa , kW̃e = k̃We, together with

k̃Ã1 = kA1, k̃ũ1 = ku1 + mw1, ṽ1 = v1,

kp̃1 = k̃p1 + 2 (A1/Re)(k − k̃)cotθ, k̃φ̃1 = kφ1.

}
(A 9)
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Transforming the governing system for the three-dimensional problem, we recover the
system governing the development of two-dimensional disturbances of wavenumber
k̃ and complex wave speed c̃. For example, (A 5), (A 6) and (A 8) reduce to their
current forms with w1 and m set to zero and with k replaced by k̃. Accordingly, to
determine the critical Reynolds number for instability it is sufficient to consider only
two-dimensional perturbations.

Appendix B. Stokes flow analysis
In this Appendix, we give brief details of the linear stability calculation for Stokes

flow. The details represent a modification of the analysis presented by Pozrikidis
(2003), who examined film flow down an inclined plane in the presence of surfactant.
The present modification allows for the inclusion of an electric field.

At zero Reynolds number, the problem to be solved is given by (3.3)–(3.6), but with
the right-hand side of (3.3) set to zero. Integrating (3.3), we obtain

ψ1(y) = a1e
ky + a2yeky + a3e

−ky + a4yeky. (B 1)

The impermeability condition at y = 0 yields a3 = − a1 and the kinematic condition
(3.6) yields A1 = − ψ1(1)/ζ . Compiling the remaining boundary conditions, we derive
the matrix system Q · x = 0, where

Q = N + ikWe

⎛
⎜⎝

0 0 0 0
0 0 0 0

1 − q 1 q 0
0 0 0 0

⎞
⎟⎠ , (B 2)

and x = (a1, a2, a4, γ1)
T . The matrix N is given in (4.2) of Pozrikidis (2003) but with,

in the notation of that paper, Ca replaced by Ca ′ and Pe replaced by 2πα′Ca ′/k.
Note that Pozrikidis’ definitions of Ca ′ and α′ coincide with the current definitions of
Ca and α, respectively. For non-trivial solutions, we require det(Q) = 0 which yields a
cubic equation with the trivial solution ζ = 0 and two non-trivial solutions. The latter
two solutions correspond to two normal modes, as was found by Pozrikidis (2003).
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